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PERTURBATION OF HOMOCLINICS AND SUBHARMONICS

IN DUFFING'S EQUATION

by

Jack K. Hale and Adalberto Spezamiglio

ABSTRACT

For Q.,ji) and (g,f) small, the equation

x -x + 2x 3 g(x) + -X P*icos t + f(t)]

is considered near the separatrix S of the unperturbed equation (X,IA) =(0,0).

For (g,f) in a neighborhood of the zero functions, a complete description

is given of the bifurcation curves in (X,11) - space to homoclinic points.

The perturbation of subharmonics outside S is also considered in a symmetric

and nonsyimmetric case.



Perturbation of Homoclinics and Subharmonics

in Duffinq's Equation

I. Introduction

Recently, a considerable number of articles have been

devoted to the study of strange attractors and how some of them

arise near homoclinic orbits from successive subharmonic

bifurcations. Different methods have been used.

In I 2], the reduction of Liapunov-Schmidt is used in

a second order equation with small time-periodic forcing and

damping, such .hat the unperturbed equation has a homoclinic

orbit ' through zero. Regions in parameter space near zero are

described where there are either homoclinic points or no

homoclinic points for the perturbed equation near r. Those

regions are defined by the bifurcation curves to homoclinic

points, and the same analysis is done with respect to subharnmic

solutions. Furthermore, it is proved that the bifurcation curves

to subharmonics of order k approach the bifurcation curves to

homoclinic points as k -. See also [1] for more details.

In F3", Greenspan and Holmes apply results based on

Melnikov's method [6J in Duffing's equation perturbed by small

dissipation and time-periodic forcing. In this case, the

unperturbed equation has a pair of homoclinic orbits r+, r-

through zero. Some calculations are shown with respect to

homoclinic and subharmonic bifurcation rurves. Also, perturbation

of subharmonic solutions outside the separatrix ru (0 u 

is considered.

1
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The above papers may be used for further references.

Here, we consider the perturbed Duffinq equation

(1.1) x - x + 2x3 + g(x) = - * + Vicos t + f(t) i

where g(O) = 0, g has continuous derivatives up through

order two in [-A,Ai, A , 0, f is continuous, 2w-periodic

2and p = (Ap) is a parameter in R2 , If g 0, f = 0 and

= 0, then equation (1.1) has a pair of symmetric homoclinic

orbits r+ + " through zero. We are concerned with the

behavior of the solutions of (1.1) near the separatrix

s= r+ {- 'u r for P, g and f small in a sense that

will be specified. Our treatment follows F21.

We will denote by Ckfa,bi) the set of all functions a

that are continuous together its derivatives up through order k

in [a,b], k a positive integer, with the Ck-norm 1qk

B(R) is the set of all continuous and bounded functions f on

R with the supremum norm Ifl., and PT is the set of all

continuous and T-periodic functions on R, with the norm

induced by S(M). If f is in P2T' we say that f is odd

hounof in. P 2T if f(t+T) -- f(t) for all t.

Consider now equation (1.1) with g an odd function

and small. Then r+, r" are still symmetric, and if in

addition f is odd harmonic in P2 7' that is, f(t+w) - -f(t),

then the bifurcation curves in p-space to homoclinic points in

the left side of S near r coincide with the bifurcation

curves to homoclinic points in the right side of S near r+.

That is, we have sectors in 0-space defined by two curves Cm,

C M  in which we have either homoclinic points In both ses nar

i Jl, i-
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S or no homoclinic points near S. In Theorem 1.1 we show

that the set of pairs (g,f) near (q,f) = (0,0) for which the

above situation occurs is a manifold of codimension two in

(g,f)-space. Theorem 1.1 also gives a complete description of the curves

of bifurcation to homoclinic orbits for (gof) in a neighborhood of zero

and not satisfying the above symmetry conditions.

Under the above symmetric conditions on g and f,

we consider in section 3 the perturbation of subharmonic

solutions of odd order for the unperturbed equation outside S .

(For subharmonics inside r+ or 7-, see 20). Here, we

applied the results in 15]. We prove that the bifurcation curves

k km ' CM to subharmonics of order k, k odd, approach the

bifurcation curves Cm , CM , respectively, as k .

Finally, the generic case when the bifurcation curves

to homoclinic )oints in the left and right side do not coincide,

is treated in section 4. We consider there the perturbation of

subharmonics of even order outside S for the unperturbed equation.

this case, we prove that the tangents to the bifurcation curves

to subharmonics at P = 0 approach two curves that are not

related to the bifurcation curves to homoclinic points as before.

In fact, the limit lines will define a sector in parameter

space near p = 0 in which we have subharmonic solutions

outside S of even order k, for large k.
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2. Perturbation of the homoclinics

Consider the second order equation

(2.1) x - x + 2x3 + g(x) = -k + ICos t + f(t)I

2where g is in C2[-A,A] for a convenient A - 0, g(0) = 0, f

is in P and (X,l) is a parameter in R When g = 0,

f = 0 and a = 0, the point (x,A) = (0,0) is a saddle point,

and the system associated to (2.1) has a pair of homoclinic

orbits r+ , , with a- and w-limit sets being {0. We

are concerned with the behavior of the solutions of (2.1) in a

neighborhood of S = r u {0} u r-, for Il, 1g1 2 and Ilf1

in a neighborhood of zero.

Let us describe the problem more specifically. If lil,

1g 2 and Ifl are sufficiently small, equation (2.1) has a

2n-periodic solution * = *(p,g,f) of small amplitude. Let

= {(t,¢(t),$(t)) : t - R1 be its trajectory in R and let

S = S(p,g,f), U - U(p,gf) be respectively the stable and

unstable manifolds in R3 of y. We know that the sets

S(t) = {(x,y) C R2 : (t,x,y) S)
R~2

U(t) = {(xy) : Rt : (tx,y) U)

are periodic. We are interested in the existence of a transverse

homoclinic point to Po = (€(O),(0)) in a neighborhood of

S; that is, a point P # Po , P - S(O) n U(O) where this

; i intersection is transversal.

When -0 and f a 0, we can apply the results in,

[23 separately to each loop r+ and r-. For each 4no of m.

we obtain a pair of differentiable curves through %*L-% in

.. ~ . ~ ~ -- --- ~ w ~ t wi



p-space, which define two sectors such that homoclinic points

appear near one loop for fl in one sectrr and no homoclinic

point occurs for t in the other. As we shall see below, we can

also give information about what happens in a neiqhborhood of

zero in the (c,f)-space. In the statement of our result,

figure 1 is helpful.

Theorem 2.1. There are neighborhoods U of S, V

of p = 0, W of (g,f) = 0 and two submanifolds Mm 1 '4M in

C2[-A,AI x P2m of codimension one, that divide W in four

regions (fig. 1-a) and whose intersection M4 is a submanifold

of codimension two that divides IN m , M  in two components,

such that:

(i) If (g,f) C W \ (Mm u IM) , there are two pairs of

distint C2 _curves Cm CM , i 1,2, which divide V in four

sectors (fig. 1-b) such that equation (1) has homoclinic points

in U in both sides of S for p '- R, only in the right side

for p R+, only in the left side for j) , R and no

homoclinic points in U for p in Ro .

+ 1 2
(ii) If (gf) C I+ then C 1  C C (fig. 1-c) and wem m Cm = m(f. -)adw

have the same implications as in (i). Analogous statement holds

for (g,f) in AIm

(iii) If (g,f) c MM , the same analysis as in (ii) holds

with respect the curves C and C

(iv) If (g,f) o, M then we have the situation in fig. l-d

with the implications in i).
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Proof: For 1g1 2 small, the equation

-x + 2x3 + g(x) 0

i unique solution P = p(g) satisfying p(O) > 0, 0(0)-0,p(t).*O
t + C. Let= r (p(t),P(t)) : t R}. If x is

lution of (2.1), the change of varibles

X(t-a) = p(t) + z(t)

2.1) leads to the following equation in z:

i + r-i + 6p(t) 2 + g'(p(t))Iz F+(t,z,4,p,i,g,f)
.. 3)

F +(t,z,,Qa,g,f) dtf - Xf(t) - I + t1[cos(t-0)+f(t-a) I

- 6p(t)z2 - 2z3 - g(p(t)+z)

+ g(p(t)) + q'(p(t))z

Let P = P be the continuous projection defined on

by

Ph = h(t)h(t)dt/, n= )i(t) 2 dt

ma 2.1 in 12] now implies S(0) n U(O) has elements near

and only if

(a) PF+(.,z,t,p,a,g,f) = 0

2.4)
2.) (b) z = K(I-P)F + (.,z, ,P VU~g ff)

tre Kh = K h is the unique bounded solution on I of the

iation

+ r-i + 6p(t) 2 + g'(p(t))]z = h(t),

in S(R), with initial value orthoqonal to (A(0),j(O)).

We can now apply the Implicit Function Theorem to

tain 6 > 0, > ' 0 such that equation (2.4-b) has a unique
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solution z* z*(0,iqf) for I <  , g12 + If. <,1 <

i t. , satisfyirng z(O0,a,O,O) = 0 and jz* - v . In fact,

z*(O,,g,f) = 0 for a in p and 1g1 2 + !f 6. Therefre,

there exists a solution x = x(p,a,g,f) of (2.1) in the

v-neighborhood of r + if and only if

= p + z(D,a,g,f)

where (p,a,g,f) is solution of the bifurcation equation

4(010I"g1f) d_9f 1J orF+(.,z 1 ,cigf +0

From the definition of F+  in (2.3), the above

equation has the form

G+ (Q,,gf) = -E + -I41Cos(.-a) + f(--a)J

+ Go(Pcz,g,f) = 0

where Go(P,a,g,f) - 0(IP12) as 1 *I 0. Solving the above

equation is equivalent to solve

H +(,iic,g,f) dgf -8 + h+(l,g,f) + Gl(8,u,a,g,f) - 0

where +(sp,a,g,f) - G +0Pio,,g,f)/P , Gl(B,O,a,g,f) = 0 ad

(2.5) h +(a'g,f) - [o(-)+ f(.-Q)J.

An easy calculation shows that h+ may be written in the form

h+ (a,g,f) (" +pcos)sin + (--)
+ 2h+ 2and then ah (w/2,0,0)/aa - 0, a (/2,0,01/ a > 0. Hence,

+ +if m= h (w/2,O,0)) we have 3H Cm,0,v/2,0,0)/0e O,

apes h 30,i/2,0,)ae > 0. The Implicit Function Theorm

impiesthere is a a > 0 and a unique function
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+ +
a 0 im ( , f  for lB - 1 I, and !gi 2 + Il, less

than 6 satisfying i(5m0,0,0) = n/2, Al+ ( FI.pga,f)/act 0.
M+ +( )q f ) i

Thus, the function m (B,W,g,f) = (i ,, , is , , ,

minimum of H with respect to a for the other variables fixed.

+ +Since M(8-'0'0'0) = 0, aM+ (a ,0,0,0)/L = -1, the Implicit

Function Theorem implies there is a unique function b*(P,q,f)

for I, 'g12 + il-L less than S satisfyini 8*(0,0,0) = 8m

Mm(8*(P,g,f),vi,g,f) = 0. There are two solutions of

H (F,P,a,g,f) = 0 on one side of the curve B = O*(u,g,f) and

no solutions on the other side. The function e* defines the

curve C by the relation X

By exactly the same idea we obtain a function

IM(U,u,g,f) satisfying a (8M,0,0,0) = 37!/2,
+ + m + +)+ (8,BJaM,g,f)/3 = 0 where BM = h (3 i/2,0,0).For 01=L (1,1,9f),

the function H+ (O,i,a,g,f) is a maximum. Following

2the last paragraph we obtain the curve CM In figure (1-b),M+

those curves define the sector R u R+ where we have homoclinic
~+

points near r and RO u R where we do not have.

By using the same procedure with the solution q(t) of

equation (2.2) satisfying q(t) - 0 as t + , q(0) < 0,

q(0)=0, r-={(q(t) ,(t)) t E R, we obtain theifurcatian curves thomoclinic

points in the left side of S and CM respectively defined by the

equations M (8,1,,g,f) = H-(8,w,amq,f) - 0 and

(M?,gpf)= H (O,U,cM,q,f) = 0 where m (ym,0,0,0) = 3r/2

(YM,O,O,O) = P/2, Ym h-(3,/2,0,0), yM = h-(/2,0,0).

We will define now the manifolds Alt , 04, so that

the analysis described in (i) becomes obvious. The curves C1

and C2 will coincide if and only if Fm(B,1Ig'f) a

+ 1 2M m (8,,g,f) - Mm(Oi,g,f) 0 and CM = CM  if and only if

I , I . ±L I
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SM(O,'g,fy= M(6,ti,g,f) - MM( O,u,g,f) = 0. Let us define

W (91f) : 1g 2 + IffI <

It= {(g,f) c W rm (aU,gf) = 0),

M = {(g,f) W F (13,u,g,f) 01.
M4 M

All the statements in Theorem 1.1 are now clear, except those

concerning the codimensions. We will prove below that codim

Md -- 2 and we observe that the same proof shows that Mm and

M M have codimension one.

In order to show that codin MW - 2 , let us consider

two linearly independent directions from (g,f) = 0 defined as

follows: we take
g(x) = ga (x) = x2

f(t) = fb(t) = bsin2t

for jal and IbI sufficiently small. A straightforward

calculation shows that, if

a (t) = 4[/a+4 (et + e-t) + 2a] - ,

then p = pa and q --pa' and the functions F. F. are

given by

r.s~,,~b -- 1(JI pCO)CIS +2( =2=0+3Fm a'J..L m m

+ JP coo)cosp +2b( p ,2.)oos2e)

a... m -a 1+ e-( .,.a b).



F (B,lI,a,b) k ~( J acos)cose+ + 2b(rP 2)cos2e I

Pacos)COSLIM 2b(p acos2.)oos2e M

where 21B,0a~b) + G 2 ,,a,b) .Teepeso

+ + + +
em = 8 (0,,a,b) is defined by am (S,,a,b) = w/2 + 0 (O,u,a,b)

and hence m+(m ,O,0,0) = 0. Analaqous observations for the 1
other e's.

Wq must show that the Jacobian determinant

det 3(Fm,FM)/3(a,b) is different from zero for (a,b) = 10,0)

and JmI small. The partial derivatives evaluated at (B,0,,0)

are given by

aF2 3FM
m = sech cos/no = FM3a _= 3a

-. M 4 sechcos2"/no 
- M

where o 2 Clearly, we only have to show that both

integrals in (2.6) are different from zero. Evaluating them by

the method of residues, we obtain

5 sechcos2- 2,e-/l + e- 2

J 2 -w/2sech cos we /

This completes the proof.
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We observe that when )g12  and Ifl. areI

sufficiently small, with g(-x) =-g(x) and f(t+w) =-~)

then (gJ,f) is in A. In fact, one can prove in this case

that the bifurcation functions satisfy G+ (x',1j'c+7'g'f)

G X rgPf

'M TZ"*t.



1..3

3. Perturbation of the subharmonics: the symmetric case

For the equation

(3.1) R - x + 2x3 + g(x) 0 ,

let p and q be as in the proof of Theorem 2.1, P6 (t) the

solution satisfying p 6 (0) = (1+6)p(O), P6 (0) 0 for 6 > 0

and 1g12  in a neighborhood of zero. Then, r6  is neriodic

with least period w(6) and w(6) . as 6 0 and

(pg(t),jg(t)) lies outside S for all t E MR.

If k is a positive integer, let 6 be such that

W(6k) = 2kn and = p " For a 27-neriodic function F
k

and a real number A, let

kH() = 1k(t)F(t-aldt ,

H A( 0 = f P W(t) + Al(t)]F(t-()dt.

Lemma 3.1. If F(t+2n) = F(t) is given, then for

every > 0, there exists an integer K such that
I ik iia

(ci)- ' () 1  € I'~Ioa_ i i

for 1 = 0,1,2, if one the following conditions is satisfied:

(a) k - K, k odd, A = -] and F odd harmonic in P2w

(b) k K , k even and A - 1.

Proof: Let £ 0 be given and suppose k odd,

A = -1 and F(t+n) - -F(t). We will prove first that
n4

__ _ _ _ _ _ _ _ _

.w y______
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00 0k

for k K. The case i = 0 will be proved since the other

part is symmetric.

Let T = T(k) be the point in (O,kr) for which

Pk(T) - 0. By choosinq K sufficiently large we have

1-T'€.-,a - -4F( a! , , k .

Now,

0- fT T J0~~c)-fT
O F(.-a JoF(-) - j. -_ k .-Q) - E k-01

OT OFI.a) _- j o4Fl' a) + Io -T k l'k( ;l1 F('-U' " - 1k Floa)j"

By making the change of variables x - p(t), x - qlt),

x = Pk(t-kn) and x = pk(t) separately in each one of the

above integrals and denoting the inverses respectively by t+ (x),

t(x), t(x) and t+(x) , the last exoression becomes
t- x), k l  )  P0) t+

J plT F(t+(')-m) - J0 Ftko )-a) +

+ Jq(T) J+
q(O) Pk(-k) k

If we fix o 0 o << 1 then we have for the first moalus

in the above expression, say Il1

* 4 j
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If Flt~l')-ll + 1'F((t+(.)-) - F( +(.I-all +p(-T)

+ +P(0)
o Fl(.)-a)I + C )

o p(0)

SolFi + IF(t+(-)-) - F(t(-)-a)l + olFl. + 6kp(O)IFI.
°0

Since t+ (x.) t (x) uniformly in compact sets and dn * 0 as

n - -, the last expression can be made less than (/8)IFI.

for large k and small a. For the second modulus, similar

estimates can be obtained taking into account that t (x) * t (x)

uniformly in compact sets and p (-n) - q(O) as n * -.

For the case i =1 we note that

k kw-a

and since Pk(kn) = 15k(-k) = 0

3Hk Hk ~P (( " +a)F

3a -kn-"

Similarly,

H-- 
i(.+a)]F

If is a smooth 2w-periodic approximation of F, we define

Akla rkw-a a)

(a) J1 J:k(,+ ) 4(.+)J

6" - - - -*.
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Hence,

Da am (a I F - 1.-kn

~ -kit

am~ (0a)I F - J, I

If F is sufficiently close to F , each of the above expressions

can be made less than (E/3) IFI . On the other hand,

(15(, d a d ~A -k

The proof of part i = 0 shows that, for larqe k, the last

expression can be made less than (e/3) IFI.

Finally, for i - 2,

~2Hk
( = -(ki)F(kMn-a) + -k1)F(-kn-o) +

+ J 15 ( "+c ) F

Since Y is continuous then a2Hk/am2  is continuous and the

same holds for a 2H /B2e Similar estimates can be obtained

taking into account that (-kw) - j(kw) is bounded as k. .

Part (a) is then proved. The proof of part (b) is analogous,

with obvious modifications. The proof is complete.

By using the sm steps of the last proof, one can

prove the following results
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Lemma 3.2. If p, q and are as above and if
(Fk t)) is a uniformly bounded sequence with rk  in P 2k such

that Fk - F uniformly in compact sets as k then for

every >, 0, there is a K such that

k kL k J k k k - _= 
+ , ]F "

holds, if one of the conditions (a), (b) in Lemma 3.1 is satisfied.

In (a),the condition on F is replaced by rk ItI har.oni i
P2k"

Let us consider now the equation (2.1) with the

symmetric conditions g(-x) = -g(x) and f(t+,) = -f(t). In

+this case, the solutions p and q of (2.2) defining r+ , r satisfy

q(t) = -p(t) for t in R. We seek here subharmonics of order

k for k odd, so let h = h+  from Theorem 2.1, that is,

h(a,g,f) - prcos(.-a) + f('-a),i

We recall from that proof that 3h(i/2,0,0)/3* = 0,

a2h1t/2,0,01/a2 > 0 and so there exists a unique function

Q*(g,f) for 1g12 + jf small, satisfying

3hC., Cg'f),9,f)/5a = 0, ac*(O,0) = 7/2. So, am*(qtf) is a

* point of minimum for h(l,q,f). Also, there is a unique

function a*(l,f) with a,(OO) - 3w/2 such that mA(g,f)

is a point of maximum for h(a,q,f).

For k an odd integer, let

(3.2) hk(eg'f) I "kJ-,[cos (.'' ) + f(*.- )], k" 2nk Ek 1
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By Lemmas 3.1 and 3.2, there exists a K such that each hk

for- k K, k od~d, has a minimum at ~(q,f), a maximum at

a(g,f) and a a , ck * c as k w.Let us also
Mm m M M

assume here that

(3.3) 4W6).0

for 6 --0 in a neighborhood of zero. L~et CMand C M be the

bifurcatio. curves defined in Theorem 2.1, part (iv). We can now

prove the following result:

Theorem 3. 1. Under the above conditions, there are

neighborhoods U of S, V of P = 0 and an integer K such

that for any odd integer k K ,there are two C 2-curves km

k k k
CM in V respectively tangents to A = hk(am )v ,A sp hk(a M)M

at P = 0 so that those curves divide V into disjoint sectors

R k R k such that equation (2-.1) has no subharmonics of least

period 2kr in U x for pe k R and at least two for P-.R k

Furthermore, C k .C and C k . C as k -~along the odd
m m M M

integers.

Proof. In this proof, k will always be an odd

integer. We choose K so that for k , K the orbit

r ((pk (t) AN (t)) t c ft) is contained in the set U of

Theorem 2.1. If X(t) is a solution of (2.1), the chanqe of

variables

XA-) kt +xt

leads equation (2.1) to

IF?_ _ _ _ _ _ _ _

-. __ _ __ _ __ _
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+ F-1 + 6pk(t) 2  + g' (Pk(t) = k(t , ,,

(3.4)

Fk(t,z, ,4,a,g,f) -M,(t) - \ + tcos(t-t) + f(t-ex) I

6 2 3(Q
-

6 (t) z2 - 2z - o(pkt)+z) +)

+ g' (p (t))z •

For the equation z + I-i + 6k(t) + 6g'P(Pkt) z = F(t)

where F is 2kn-periodic, hypothesis (3.3) imtlies it has a

2kn-periodic solution if and only if

_ t)F(t)dt = 0

If P is the conti"'ious projection defined on P2k by

k~k
PkF Pk ~ F/r 2

then there is a unique 2kn-neriodic solution KkF with initial f
value orthogonal to (500) ,6k (0 ) ), and Kk defined on (I-Ph)P"k) Ar

is continuous and linear. Furthermore, there exist constants

C and a - 0 independent of k such that

(3.5) IKk(l- P )l r - Ce- tFl~ , ti k.

(see 'l., Lemma 11.4.6). Therefore, equation (2.1) has a

2kr-periodic solution near vk  if and only if

(a) PkFk(*,Z#,OK,g#f) = 0

(3.6)

(b) z K k(-'pk) k('ZIP#C9gjf)
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We can now use the Contraction Mapping Principle to

iation (3.6-b). By using estimates (3.5) and the fact

and tk are uniformly bounded in R , we obtain 6 > 0

0 independent of k such that equation (3.6-b) has a
A1ution z* = z*(px,g,f) for ol , + IfM0< 6

ig Iz*I < v. Thus, subharmonics of order k near r

rmined by the solutions , of the bifurcation

G00(,a'g'f) N kI z*'FQI~I'g~f) = 0.
k'k '-k=

Dre, the number v can be chosen so that all

nics that are obtained in that way belong to the

hood U of 1'.

By the definition of Fk in (3.4), the above equation

form

-X + ph k(,q,f) + i.k(pcxsf) = 0

k(ODcg,f) = O(IPI 2) as IpI -, 0. The bifurcation
k k

C k 0CM are now obtained by exactly the same

e as in Theorem 2.1. In order to prove the statement

rgence, we observe first that z i is odd harmonic, and

k ( " ,z, , Furthermore, since -k p and

uniformly in compact sets as k , then

+
,p,Q,g,f) F (t,z,2,p,i,,q,f) uniformly for all the

s in compact sets, and from Lemmas 3.1 and 3.2,

F+  uniformly in compact sets as k . , k odd. By

ty with respect to initial data, z z* and so

'k1,PQq,f) . F+(t,zipQ,g,f) uniformly in compact



;cts. Lemimas 3.1 and 3.2 now imply C.k('P,!ICr~f) G (P'c'g'f) as

c , k odd, .or H and (T 2 + K sufficiently small,

k'r . The proof is complete.
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4. The nonsymmetric case

Let p(g),q(g), 1g12 sufficiently small, be the solutions

of (2.2) defining the homoclinic orbits r (g),,r(g) in the proof

of Theorem 2.1. Suppose g0  is a fixed function, p =(g,

= q(g0
) , and go satisfies the nonsymuetric condition

(4.1) fI p(t) + j(t)] cos t dt # 0

In order to fix ideas, let us suppose the integral in (4.1)

is positive.

Our objective is to discuss the existence of subharmonic

solutions of (2.1) of order k, k even, outside r+(g) U {o} U r-(g)

for g in a neighborhood of go and f in a neighborhood of zero.

To simplify notation, let p = p(g), q = q(g). From Lemma 3.1,

we expect the curves of bifurcation of these subharmonic solutions

tc be related to the function

. + r C os +.f

(Q5 +

It is easy to see that 11 may be written in the form

i(,f)=-1- (pD+q)ccoslsinx + (,+)f .a

Wc then notice that l1 (;1i/2 , ( ,0)/, 
=  , 2

and so there is a unique function im(.,f) defined for

!,I - go 2 + ltl - small satisfying tm(*Q,,) - "/2 nd

4*(gf) is a point of minimum for ( Also, there is a
m

uniqae function ,,*(g,f) for 1i - + t' small

scitisfying ,i(go,0) = 3r/2 and "*(q,f) is a noint of

maximum for R(',1Cf) .s~Aisying~x'j(iO)
,:..--.-... .: ,-.. " ,.!o - ,- . < ; -; :o :J .,; .
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For k an even integer, let [ff(a,crf) be defined by

formula (3.2). By Lemmas 3.1 and 3.2, th,:r(. exists an integer K

such that each function ifk for k 1K, Y. even, has a
miiuma k k s

minimum at k ((,f a maximum at ak (t, f) and Cm ,'

CA k t as k ' . We will also assume that hypothesis (3.3)
M 1.1

is satisfied. By exactly the same procedure as in Theorem 3.1,

we can prove.

Theorem 4.1. Under abovw conditions, there are

neighborhoods U1 of S , V of = 0 and an integer K such
' C~2_cre

that for any even integer k - , there are two C-curves

k ck in~km ' M in ' respectively tangents to I = Hk(M)L

= H (a ) at ii 0 so that those curves divide V into
k M

k k
disjoint sectors R R such that equation (2.1) has no

0- ksubharmonics of least period 2kr in U for P in Rk
0

k
and at least two for P in R. Furthermore, the above

tangents approach A = H(a*) , VI = tf(, )I respectively as

km? k c

. -.. *-, .'.~ - - .
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